Key Generation

Choose a big enough prime number *p* and a primitive root *g*:

Select an α at random

$$\alpha \in \{1, 2, ..., p-2\}$$

 $g \in \mathbb{Z}_p$, p is prime

and compute A with

$$A \equiv g^{\alpha}$$

The private key is the exponent α , whereas the tripel (*p*,*g*,*A*) represents the public key.

Signature

 $M \in \{0,1\}^*$:= the to be signed message.

 $h: M \rightarrow \{1, 2, \dots, p-2\}$:= a cryptographic hash function.

Select a *k* by chance

$$k \in \{1, 2, ..., p-2\}$$
 with $gcd(k, p-1)=1$

and compute the signature (r,s) of the message M

$$r \equiv_p g^k$$
, $s \equiv_{(p-1)} k^{-1}(h(M) - \alpha r)$

Verification

Verify that $1 \le r \le p-1$ and $A^r r^s \equiv_p g^{h(m)}$ holds.

Correctness

$$A^{r} r^{s} \equiv_{p} g^{\alpha r} g^{k s} \equiv_{p} g^{\alpha r} g^{k(k^{-1}(h(M) - \alpha r)mod(p-1))}$$
$$A^{r} r^{s} \equiv_{p} g^{h(m)} with h(m) \in \{1, 2, ..., p-2\}$$

In case $A^r r^s \equiv_p g^{h(m)}$ is fulfilled for a certain tuple (*r*,*s*) and furthermore $r \equiv_p g^k$ holds, it follows

$$g^{\alpha r+ks}\equiv_p g^{h(m)}$$

Besides we know

$$g^{y} \equiv_{p} g^{x} \Leftrightarrow x \equiv_{(p-1)} y$$

$$\alpha r + k s \equiv_{(p-1)} h(m)$$

$$k s \equiv_{(p-1)} h(m) - \alpha r$$

$$s \equiv_{(p-1)} k^{-1} (h(m) - \alpha r)$$